Wireline Standard Data Processing


ODP logging contractor: LDEO-BRG

Hole: 902D

Leg: 150

Location: New Jersey Offshore (NW Atlantic)

Latitude: 38° 56.079' N

Longitude: 72° 46.375' W

Logging date: June, 1993

Bottom felt: 819 mbrf (used for depth shift to sea floor)

Total penetration: 740.1 mbsf

Total core recovered: 676.96 m (91.9%)


Logging Runs


Logging string 1: DIT/SDT/NGT

Logging string 2: HLDT/CNTG/NGT (upper and lower sections)

Logging string 3: FMS/GPIT/NGT


Bottom-hole Assembly


The following bottom-hole assembly depths are as they appear on the logs after differential depth shift (see "Depth shift" section) and depth shift to the sea floor. As such, there might be a discrepancy with the original depths given by the drillers onboard. Possible reasons for depth discrepancies are ship heave, use of wireline heave compensator, and drill string and/or wireline stretch.


DIT/SDT/NGT: Bottom-hole assembly at ~107 mbsf

HLDT/CNTG/NGT: Bottom-hole assembly at ~121.5 mbsf

FMS/GPIT/NGT: Did not reach the bottom-hole assembly; due to the bad hole conditions, only the lower part of the hole has been logged.




Depth shift: Original logs have been interactively depth shifted with reference to NGT from spliced HLDT/CNTG/NGT runs and to the sea floor (- 819 m). The program used is an interactive, graphical depth-match program which allows to visually correlate logs and to define appropriate shifts. The reference and match channels are displayed on the screen, with vectors connecting old (reference curve) and new (match curve) shift depths. The total gamma ray curve (SGR) from the NGT tool run on each logging string is used to correlate the logging runs most often. In general, the reference curve is chosen on the basis of constant, low cable tension and high cable speed (tools run at faster speeds are less likely to stick and are less susceptible to data degradation caused by ship heave). Other factors, however, such as the length of the logged interval, the presence of drill pipe, and the statistical quality of the collected data (better statistics is obtained at lower logging speeds) are also considered in the selection. A list of the amount of differential depth shifts applied at this hole is  available upon request.


Gamma-ray processing: The NGT data have been processed to correct for borehole size and type of drilling fluid.


Acoustic data processing: The array sonic tool was operated in linear mode, including long-spacing (8-10-10-12') and short spacing (3-5-5-7') logs. Because of the extremely poor quality of the sonic logs in the interval above 523 mbsf, processing has been performed on the long spacing logs only in the lower part of the hole. Using two sets of the four transit time measurements and proper depth justification, four independent measurements over a -2ft interval centered on the depth of interest are determined, each based on the difference between a pair of transmitters and receivers. The program discards any transit time that is negative or falls outside a range of meaningful values selected by the processor.


Quality Control


null value=-999.25. This value generally appears in discrete core measurement files and also it may replace recorded log values or results which are considered invalid (ex. processed sonic data).


During the processing, quality control of the data is mainly performed by cross-correlation of all logging data. Large (>12") and/or irregular borehole affects most recordings, particularly those that require eccentralization (CNTG, HLDT) and a good contact with the borehole wall. Hole deviation can also affect the data negatively; the FMS, for example, is not designed to be run in holes deviated more than 10 degrees, as the tool weight might cause the caliper to close.


Invalid density and density-related data (PEF, DRHO) at 586, 596, and 676 mbsf.


Data recorded through bottom-hole assembly should be used qualitatively only because of the attenuation on the incoming signal. Invalid gamma ray data at 98-102 mbsf (DIT/SDT/NGT run).


Hole diameter was recorded by the hydraulic caliper on the HLDT tool (CALI) and on the FMS string (C1 and C2).


Details of standard shore-based processing procedures are found in the "Explanatory Notes" chapter, ODP IR Volume 150. For further information about the logs, please contact:


Cristina Broglia
Phone: 845-365-8343
Fax: 845-365-3182
E-mail: Cristina Broglia