LWD Standard Data Processing
ODP logging
contractor: LDEO-BRG
Hole 1250A
Leg: 204
Location: Hydrate Ridge - Cascadia Margin (NE Pacific)
Latitude: 44° 34.1176' N
Longitude: 125° 9.0179' W
Logging date: July 21-22, 2002
Water Depth: 806 mbrf (as seen on the logs)
Total penetration: 213 mbsf
The logs were recorded using the LWD (Logging-While-Drilling) technique, which allows acquisition of open-hole logs using instruments that are part of the drill string itself. The advantages of this technique include being able to log in formations that would not provide a stable hole for wireline logging (e.g. the upper section of sedimentary formations), and logging a hole immediately after it is drilled, so that it is in good condition and free of was-outs.
During Leg 204, the following LWD tools were employed:
RAB = Resistivity-at-the-bit (resistivity, gamma ray, borehole images)
ADN = Azimuthal Density-Neutron (density, porosity, differential caliper)
NMR = Nuclear Magnetic Resonance (free-fluid volume, bound-fluid volume, porosity).
In Hole 1250A, the penetration rate was approximately 25 m/hr, except for the top 30m, where a lower rate (15 m/hr) and fluid pressure were used to moderate formation washout at shallow depths. Below 30 mbsf, a MWD (Measurement While Drilling) "Power-pulse" unit transmitted a sub-set of the down-hole data (weight-on-bit, resistivity, etc) to the ship as a signal on a 6 Hz fluid pressure wave.
No RAB data (resistivity, gamma ray) was recorded for this hole because of battery depletion. Holes 1247A, 1248A, 1249A and 1250A were logged without bringing the LWD tools to the surface to download the data, and the batteries did not last as long as had been anticipated. RAB data was acquired in Hole 1250B.
Processing
Depth shift: Original logs have been depth shifted to the sea floor (-806 m). The sea floor depth was determined by the step in gamma ray and resistivity values at the sediment-water interface.
Neutron porosity data: The neutron porosity measurements have been corrected for bit size, temperature, mud salinity, and mud hydrogen index (mud pressure, temperature, and weight).
Density data: Density data have been processed to correct for the irregular borehole using a technique called "rotational processing", which is particularly useful in deviated or enlarged borehole with irregular or elliptical shape. This statistical method measures the density variation while the tool rotates in the borehole, estimates the standoff (distance between the tool and the borehole wall), and corrects the density reading (a more detailed description of this technique is available upon request).
Nuclear
Magnetic Resonance:
The Anadrill NMR tool used during Leg 204 was an experimental tool; processing was performed onshore by Anadrill.
Quality
Control
During the processing, quality control of the data is mainly performed by cross-correlation of all logging data. The best data are acquired in a circular borehole; this is particularly true for the density tool, which uses clamp-on stabilizers to eliminate mud standoff and to ensure proper contact with the borehole wall. A data quality indicator is given by the differential caliper (DCAL) channel which measures the tool standoff during the recording. Another quality indicator is represented by the density correction (DRHO).
Additional information about the logs can be found in the "Explanatory Notes" and Site Chapter, ODP IR volume 204. For further questions about the logs, please contact:
Cristina
Broglia
Phone: 845-365-8343
Fax: 845-365-3182
E-mail: Cristina Broglia