Schlumh nic Scanner y Mobility Analysis from St n Reflectivity & Attenus 50 ft to 6500 ft V: Battelle Pacific Northwest Wallula Basalt Pilot #1 Wildcat Wallula Basalt Pilot #1 Wildcat Wallula Basalt Pilot #1 Walla Walla Washington Y: USA Job No: TWO TWO 1035 - 999.25 ohm.m @ -999 -999.25 ohm.m @ 212 -999.25 ohm.m @ 212 -999.25 degF -999.25 degF SACRAMEN BEN GRAU	Witnessed by:	Equip. Location	Max. Rec. Temp.	Longer on Bottom	Rm @ BHT	Source: Rmf Rmc	Rmc @ Meas. Temp.	Rmf @ Meas. Temp.	Rm @ Meas. Temp.	pH Fluid Loss	Dens. Visc.	Type fluid in hole	Bit Size	Casing-Logger	Casing-Driller	Top Log Interval	Btm I og Interval	Depth Logger (Sehl)	Run No.	Date	Drilling Weasured From: DF	Log Measured From: DF	Dermanent Datum: GBOI INI	COMPA WELL: FIELD: County: State: COUNT LOCAT LOCAT LOCAT LocAt Latitude: 46		Batt Wal Wal USA API No:	elle lula l la W shing		state:	County:	FIELD:	VELL:	COMPAN		82				Waveforn	Natural Fra					So				
	CHARLOTTE SULLIVAN	3152 SACRAMEN	-999.25 deaF	10·25	-999.25 ohm.m @ 212 (-999.25 ohm.m @ -999	-999.25 ohm.m @ -999	23.1 ohm.m @ 64.2 dea	-999.25 -999.25 in3	8.4 lbm/gal -999.25 s	FRESH WATER	12.25 in	1108 ft	13.325 in @ 1108 ft	1108 ft	4103 ft	11 CU1 4	TWO			5.5 ft above Perm. Datum	01 EVEL Elev: _000 25 tt	Township: 7 Range: 31E 1049 Longitude: –118.916	IHWEST 1/4 OF SECTION 10	Job No.:			Washington	Walla Walla	Wildcat	Wallula Basalt Pilot #1	VY: Battelle Pacific Northwes		50 ft to 6500 ft				n Reflectivity & Attenu	cture Analysis from St			y Mobility Anal		nic Scanner			Sey multiple	
		ſ	FOL	DH	ERE												Th	e w	ell n	ame	, loca	tion a	nd l	oorehol	e re	feren	ce c	data	wer	e fur	rnish	ned b	by the	cu	stomer														
FOLD HERE The well name, location and borehole reference data were furnished by the customer								T F S V F	THE REPI SCHI WAR FULL	USE RES LUM RAI . AN	E OF ENT IBEF NTIE	f an Fat Rge Es <i>a</i> Ole	ND I TVE ER / AND E RI	REL S, A ANE RE ESF	.ian Age D th Epr Pon	ICE ENT HE (ESE ISIE	UP S, C COM ENT	on On Ipa Ati	THI SUL NY, ONS	S RE TAN INCI S RE ANY	COR ITS A LUDII GARI INFE	DED- ND El NG: (a DIND REN(-DA MPI a) R COI CE	TA BY LOYEE ESTRIC MPANY DRAW	THE S) IS CTIC (''S N O	e hei S Su DNS (USE R DE	REII HJE ON OP CIS	N N/ ECT USE AN	AME TO E OF D RE I MA	D C THE THI ELIA DE	OMF E TEF E RE NCE IN C	PAN RMS ECO E UP CONI	Y (AN 3 AND 9 RDEE 9 ON T NECT	ND A D CC D-E THE TION	ANY OF ONDITIC DATA; (I E RECO N WITH	F ITS ONS b) DIS RDEI THE	AFFIL AGRE SCLAI D-DA ⁻ USE (.IATE ED (MEF TA; A OF T	ES, P UPOI IS AN AND THIS	PARTI N BE ND W (c) C REC	NERS TWEE AIVEF JSTO ORDE	, EN RS OI MER' ED-DA	= S ATA.						
FOLD HERE The well name, location and borehole reference data were furnished by the customer THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUHJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDIND COMPANY'S USE OP AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.	Sei	. Orde	er#/	AZJ	T00	051				OP	Ver	′s.:	170	C0-	154	ŀ				Pro	cess	Date:	Jur	n–09–2	2009		(Cen	ter: I	CS	6–De	enver	r			Base	line: (GF4.	4				Log A	Analy	st: S	.Riley	,G.Ma	artine	z

3/CC TONE AN AS PER TOOL SKETCH ED USING FCD = 13.375" DES: ??? PPM

Scanner

Log Analyst's Remarks:

OBJECTIVE: of anisotropy. Comparison with FMI data to eva Qualitative Fracture Identification

AVAILABLE INPUT DATA:

Mud Weight GR NPOR and RHOZ from Open H anisotropy processing) HD1 & HD2 or HDAR calipers fr Scanner or from single arm calip DTSM: DT – Shear from CROS DTCO: DT - Compressional fror DTST: DT – Stoneley STONELEY Waveforms (from re

DATA QUALITY:

relabelling of the formation arriv: Stoneley waveforms displayed c

PROCESSING DETAILS:

waveforms. The DT-Shear, DTprogram. DT-Shear (DTSM) wa DT-Compressional (DTCO) was for Sonic Fracture analysis. "Best DT" program as well as the

Transmission Coefficients. computed from the log Stoneley These effects were then backed due to borehole washouts and b Stoneley waveforms. A forward Reflective and Transmission Co

Model) was made with the meas fractures crossing the borehole. Coefficients are affected by bore hydrocarbons in the borehole), v bed boundaries, and mud prope The modeled Reflection/Transm

RESULTS:

great influence of the more poro since it is an indication of VTI an to finely laminated rocks such as in which the modeled Stoneley s of the composite print as an orar A comparison between the mode presence of fractures are expect

with the highest porosity were th to have little permeability. On the

appeared to be confirmed by the porosity and little permeability. In Some differences were observer

	eled Stoneley and measured Stoneley slownesses displayed a us zones. In general, the FMI interpreted fractures appeared other hand, Stoneley mobility analysis showed that the zones le zones with the highest Stoneley mobility as well. d in the sections of the basaltic flows where the minimum these zones the influence of segments in the fluid flow Stoneley mobility.
	ission Coefficients are generally affected by borehole rugosity, rties(that can also be affected by the presence of light while the measured Stoneley Reflection/Transmission shole rugosity, bed boundaries, mud properties, and open A comparison of the modeled elastic Stoneley slowness (Tezuka sured Stoneley slowness. This is presented in the first track rge shading to indicate zones with permeability due to the ted. In this same track it has also been flagged the sections slowness is slower than the measured Stoneley slowness isotropy (or vertical anisotropy which is generally associated s shales).
	efficients were computed from the filtered, stacked log model estimated the effect of reflections, and attenuations ed-boundaries using DTSM, DTCO, RHOB, and CALIPER data. out of the Reflection and Transmission Coefficients waveforms to obtain the final results of the Reflection and
Graphic Illustration Captions:	Processed from monopole waveforms using "Best DT" s processed from CROSS-DIPOLE waveforms using e DT-Stoneley (DTST), which was derived from the MST -Compressional, and DT-Stoneley are part of the inputs
	ptimal coherence in the logged section and required little রা times.
	om 4 arm CALIPERS run in combination with the Sonic ver respectively ole Neutron – Density logs.
Mud attenuation was calibrated at -2.5 db/m.below 3100 1 Isotropic and undisturbed waveform was selected at 3780	n FAR MONOPOLE waveforms 3 DIPOLE waveforms or DTSM_FAST (Fast Shear from
Multishot processing for all the slownesses.	ceivers #1 to #13)
Stoneley waveform filtering from 0 to 2500 Hz for reflection coeffecients.	
* Parameters are assumed to be default parameters unlex GENERAL	n using Sonic Scanner Stoneley Waveforms. aluate fracture permeability. Examine the cause
Processing Parameters: *	

6 (in) 16 Gamma Ray	
Gamma Ray	
0 (gAPI) 150	
Hole Diam1	
6 (in) 16	
Hole Diam2	
6 (in) 16	
Hole Enlorgem	Water
	Walei
MINXENE Stoneley DT STTC@BHC	
0 () ¹⁰⁰ 300 (us/ft) 185 0.75() 1	
MAXXENE Model Stonele STTC@REC	
0 () ¹⁰⁰ 300 (us/ft) 180 0.75 () 1 100000 (mD) 0.01	
STTC@TRA STRC@UP STRC@DN Mobility	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
TENS STTC@MOD STRC@MOD STRC@MOD FWID_DF Segments Traces	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
MD 1 · 240 Formation Tap R/H Eff R/H Eff R/F Eff Stanology Apart Trace Length Open Stoneley VDL Stoneley Mode ELA	AN_VOLUMES ELAN_P
ft b/r Ell b/r	(V/V) 0

									ξ								
	MD 1:240	Formation Top	B/H Eff	B/H Eff.	B/E Eff.		Stoneley Apert		Trac	ce Length Oper	n		Stoneley VDL	St	oneley M	ode	Water
	ft								10	(1/ft)	0	0	(us) 20440	0	(us)	20440	
	TENS	St Perm S-Se	STTC@MOD	STRC@MOD	STRC@MOD		FWID_DF		Se	gments Traces	; 						
	10၉၉4900		0.75 ₍₎ 1	0 ()0.25	0 ()0.25	0	(in) ^C	0.1	10	(1/ft)	0						
	Cross F	VTL Arico	STTC@TRA	STRC@UP	STRC@DN					Mobility							
	Closs-E	V TI ANISO	0.75 () 1	0 ₍₎ 0.25	0 ()0.25				1e+06	(mD/cP)	0.001						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	MAXXENE	Model Stonele	STTC@REC					Γ	ELA	N Permeability	y						
	0 ()100	300 (us/ft) 180	0.75 () 1						100000	(mD)	0.01						
MINXENE		Stoneley DT	STTC@BHC					-				,					
	0 ()100	300 (us/ft) 185	0.75 () 1														Zeolite
		Ovalization															× × × × × × × × × × × × × × × × × × ×
		Hole Enlargem															LAN_VOLUMES ELAN_P 1 (V/V) 0
		Hole Diam2															
		6 (in) 16 Hole Diam1															
		6 (in) 16															
		Gamma Ray															
	·	0 (gAPI) 150															
		BIT SIZE															
		⁶ (in) ¹⁶															

Stoneley Wave

Interface wave that travels at the borehole wall

Sensitive to: Fluid Velocity Hole size

Fluid Mobility Open Fractures

Technical Paper References:

SEGJ

"Fracture Evaluation from Inversion of Stoneley Transmission and Reflections"; T. Endo, K. Tezuka, T. Fukushima, A. Brie, H. Mikada and M. Miyairi; SEGJ International Symposium, 1998.

SPWLA

"Fracture and Permeability Evaluation in a Fault Zone from Sonic Waveform Data"; Takeshi Endo, Schiumberger K.K., Wireline & Testing, Fuchinobe, Japan, Hisao Ito, Geological Survey of Japan, Tsukuba, Japan, Alain Brie, Schlumberger K.K., Wireline & Testing, Fuchinobe, Japan, Mohammed Badri, Schlumberger Logelco Inc., Wireline & Testing, Cairo, Egypt, and Mohamed El Sheikh, Agiba Petroleum Company, Cairo, Egypt; SPWLA Annual Symposium in June 1997

SPWLA

"Fracture Evaluation from Dipole Shear Anisotropy and Borehole Stoneley Waves"; Takeshi Endo, Schiumberger K.K., Wireline & Testing, Fuchinobe, Japan, Alain Brie, Schlumberger K.K., Wireline & Testing, Fuchinobe, Japan, Mohammed Badri, Schlumberger Logelco Inc., Wireline & Testing, Cairo, Egypt; SPWLA Annual Symposium in June 1996

Output Channels From This Processing:

DESCRIPTION OF SONFRAC CURVES

STONELEY TRANSMISSION AND REFLECTION

Description

Name

STTC.BHCStoneley Transmission Coefficient - Bore HoleCompensated mode

(Average of Transmission Coefficients of Transmitter array and Receiver array direct waves).

STTC.TRA Stoneley Transmission Coefficient - Transmitter array mode.

STTC.REC Stoneley Transmission Coefficient - Receiver array mode.

REFCD.MST Flag of Stoneley Downgoing Reflection Coefficient for each identified reflector (EVENTD =1).

REFCU.MST Flag of Stoneley Upgoing Reflection Coefficient for each

identified refl	ector (EVENTU =1).
EVENTD 0 for a non-rea	Flag for identified downgoing reflector (1 for a real reflector, al reflector).
EVENTU for a non-real	Flag for identified upgoing reflector (1 for a real reflector, 0 reflector).
STRC.DN	Stoneley Downgoing Reflection Coefficient.
STRC.UP	Stoneley Upgoing Reflection Coefficient.
(ii) FRACTUR	RE APERTURE DISTRIBUTION
FWID_DF	Computed Fracture Width (from the dipping fracture model with borehole correction).
FERR_DF	Errors of inversion from the dipping fracture model with borehole correction.
FPERM_DF	Fracture Permeability (from the dipping fracture model with borehole correction).
FWID_AHF	Computed Fracture Width (from the apparent horizontal fracture model with borehole correction).
FERR_AHF	Errors of inversion from the dipping fracture model with borehole correction.
FPERM_DF	Fracture Permeability (from the dipping fracture model with borehole correction).
FWID_AHF	Computed Fracture Width (from the apparent horizontal fracture model with borehole correction).
FERR_AHF	Errors of inversion from the dipping fracture model with borehole correction.
FPERM_AHF	Fracture Permeability (from apparent horizontal fracture model with borehole correction).
FVDA	Apparent Fracture Density input by user.
DIP	Fracture Dip Angle input by user.